If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=18t-t^2+6
We move all terms to the left:
0-(18t-t^2+6)=0
We add all the numbers together, and all the variables
-(18t-t^2+6)=0
We get rid of parentheses
t^2-18t-6=0
a = 1; b = -18; c = -6;
Δ = b2-4ac
Δ = -182-4·1·(-6)
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{87}}{2*1}=\frac{18-2\sqrt{87}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{87}}{2*1}=\frac{18+2\sqrt{87}}{2} $
| 0(x)=x+2 | | 5u+15=2u+36 | | 0=18t-t^+6 | | (x-3)/6=2 | | 25x/3=-25/9 | | 6y-6=24 | | 6x+4=x+29 | | 18x-(8x-9)=39 | | (x+34)(2x+2)=180 | | 7x+3=12×-7 | | (-8)-p=3 | | 4k-5=2k+3 | | 4m+3/2=2m+1/3 | | 43+x=-12 | | 48÷4+k=19 | | 48/4+k=19 | | 7x+6x-12=0 | | 2x+184=5 | | -4x/5=40 | | 6t+2=3t+5 | | -45x=-36 | | 15/12=3/n | | 75.4=2πr | | 9x^2+18x=5 | | x+3=3(2x–4) | | 240x=40 | | 9x-8=118 | | 76-16=8x | | 28+40+2x=180 | | 25x+20=180 | | 6x+4x+30=180 | | 6x+8x+6x=180 |